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1. Background

I The Generalized Autoregressive Score (GAS) framework of
Creal et al. (2013) and Harvey (2013) provides a general
method to specify time varying parameter models.

I Time series often shows changing dynamics. We can have
high persistence in some time periods and low persistence in
others. GAS models may not be always able to properly
handle these situations.

I We propose an extension to GAS models that allows to
capture more complex dynamic behaviors.

2. Proposed approach

I Consider the following GAS model for time varying mean

yt = µt + εt, εt
iid∼ N(0, σ2),

µt+1 = µt + α(yt − µt).

The parameter α is particularly relevant as it determines the
speed of adjustment of µt when a new observation becomes
available.

I We introduce time variation in α. The accelerating GAS
(aGAS) model is described by the following equations

µt+1 = µt + αt+1(yt − µt), αt+1 = exp(ft+1),

ft+1 = ωα + βαft + αα(yt − µt)(yt−1 − µt−1).

The parameter αt is driven by products of past innovations.

I The aGAS model can be useful in situations where the
amount of local information is changing over time.
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Figure 1: Simulated series. The red lines denotes the mean of the series.

We would like to update quickly the mean after the breaks
and maintain it constant when the level is not changing.
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Figure 2: Filtered µt for different values of α.

Figure 2 shows that with a constant α there is a trade-off
between updating quickly the mean and being exposed to
the noise. Whereas, using the dynamic αt can allow to
update quickly µt only after the brake in the level.

I The model presented here is a specific case of GAS model
for time varying mean and Gaussian errors. Our approach
can be applied in a general GAS setting by replacing the
innovation yt − µt with the score of the predictive
log-likelihood.
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3. Simulation experiment

I We generate time series from the following Data Generating Process

yt = µo

t
+ ηt, ηt

iid∼ N(0, 1),

where µo

t
is given by

µo

t
=

{
0 if sin

(
γ−110−2(πt − 1)

)
≥ 0

δ if sin
(
γ−110−2(πt − 1)

)
< 0.

The series in Figure 1 is a realization from this process with δ = 3 and γ = 2.

I The objective is comparing the ability to approximate µo

t
of the GAS and the aGAS model
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Figure 3: 95% confidence bounds, MSE and filtered αt.

γ = 1.0 γ = 1.5 γ = 2.0 γ = 2.5

GAS aGAS GAS aGAS GAS aGAS GAS aGAS

δ = 0.0 3.86 3.99 3.86 3.99 3.86 3.99 3.86 3.99

δ = 0.5 22.34 22.33 20.19 20.19 18.17 18.13 17.05 16.94

δ = 1.0 31.69 31.40 28.57 28.07 25.70 24.91 23.99 22.89

δ = 1.5 39.21 38.13 35.25 33.56 31.66 29.14 29.48 26.31

δ = 2.0 45.78 43.50 41.05 37.62 36.81 31.97 34.21 28.47

δ = 2.5 51.78 48.29 46.30 41.26 41.45 34.64 38.47 30.60

δ = 3.0 57.38 53.09 51.18 45.02 45.75 37.58 42.40 32.83

δ = 3.5 62.71 58.05 55.80 48.98 49.79 40.91 46.08 35.54

Table 1: MSE between the true µo

t
and the filtered µt.

I Summary:
1. The dynamic αt allows to update quickly µt only after the breaks.
2. The aGAS is more robust against the noise component ηt when µo

t
is constant.

3. The aGAS model outperforms the GAS model in terms of MSE.

4. Empirical application: US consumer price inflation

I The series exhibits rapid changes in the level during the 80s, whereas, the level changes slowly
in other periods.
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Figure 4: Quarterly US consumer price inflation series.

I An aGAS model with Student-t error distribution and time varying variance is estimated.
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Figure 5: 1st plot: µt. 2nd plot: αt. 3rd plot: σ2
t
.
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Figure 6: Dashed line: GAS. Continuous line: aGAS.

I Summary:
1. The filtered αt is particularly high in the 80s.
2. The aGAS mean is updated quickly in the 80s and slowly in other periods.
3. The aGAS model outperforms the GAS model both in-sample and out-of-sample.

5. Final remarks and conclusion

I The considered aGAS specification for the time varying parameter is justified by an optimality
argument in the spirit of Blasques et al. (2015).

I The aGAS approach can be applied to a more general class of models such as GARCH-type
models.

I Empirical applications and the simulation experiment show how our approach can be useful in
practice and enhance the performances of score-driven models.
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