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Introduction (1)

A general approach to specify a dynamic model for the
observed data {y1, . . . yn} is to consider a parametric model
and to allow some of the parameters to be time varying.

The random elements yt , conditionally on λt , are
independently distributed as

yt |λt ∼ p(yt |λt , θ),

where p(·|λt ; θ) is a density function.

Depending on the specification of λt , two classes of models:
parameter driven and observation driven models.
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Introduction (2)

Parameter driven models: λt is a stochastic process that is
not perfectly predictable given the past information Ft−1.

Observation driven models: λt depends only on past
random variables and it is perfectly predictable given Ft−1.

Example: time varying variance

yt = σtεt , εt
iid∼ N(0, 1),

Stochastic Volatility model:

lnσt+1 = ω + β lnσt + σηηt , ηt
iid∼ N(0, 1).

GARCH model:

σ2t+1 = ω + βσ2t + α(y2t − σ2t ).
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Introduction (3)

A great advantage of observation driven models is that the
likelihood function is available in closed form. There is no
need of time-consuming simulation-based methods for
inference.

For the GARCH model the use of the squared observations y2t
as driving mechanism for σ2t is intuitive. However, in general
it is not obvious what function should be used to update λt .

Question: How to specify λt in an observation-driven setting?

Answer: Generalized Autoregressive Score (GAS) models.
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GAS framework

The peculiarity of GAS models is that λt is driven by the
score of the predictive log-likelihood, i.e.

uλ,t :=
∂ log p(yt |λt ; θ)

∂λt
.

the time varying λt is defined as

λt+1 = ωλ + βλλt + αλsλ,t , sλ,t = Sλ,tuλ,t

where Sλ,t is a positive scaling factor, function of λt .

Typical choices of Sλ,t are the identity, I−1t and I
−1/2
t , where

It = E [u2λ,t |λt ].
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Why GAS models?

Some reasons to use GAS models

Main reason: they are very effective in practical applications.

They are observation driven models and therefore they can be
easily estimated by maximum likelihood, no need of simulation
methods.

The use of the score of the predictive likelihood as updating
mechanism, besides being intuitive, is optimal from an
information prospective, see Blasques et al. (2015).
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Some properties of the GAS process

The sequence {sλ,t}t∈Z is a martingale difference, i.e.
E [sλ,t |λt ] = 0.

The h-steps ahead conditional expectation for λt is

E [λt+h|λt ] = ωλ

h−1∑
i=0

βiλ + βhλλt .

E [λt ] = ωλ/(1− βλ), when E |λt | <∞.

Var [ut |λt ] = It .
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Likelihood-based inference

GAS models can be easily estimated by maximum likelihood,
the conditional log-likelihood function is written as

L̂n(θ) =
n∑

i=1

log p(yt |λ̂t(θ), θ).

The time varying parameter λ̂t(θ) is obtained recursively as

λ̂t(θ) = ωλ + βλλ̂t−1(θ) + αŝλ,t(θ), t ∈ N

for a given initialization λ̂0(θ).

The initialization λ̂0(θ) is typically set equal to ωλ/(1− βλ).
Alternatively, λ̂0(θ) can be considered a parameter to be
estimated.
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GAS models

It turns out that many existing observation-driven models are
GAS models; for instance, the well known Gaussian GARCH
model is a Gaussian volatility GAS model with scaling factor
St = I−1t .

Other existing models that are GAS models: EGARCH of
Nelson (1991), ACD of Engle and Russell (1998), MEM of
Engle (2002), ACM of Rydberg and Shephard (2003) and the
Poisson model of Davis et al. (2003).

GAS approach leads also to many new models, see for
instance Creat et al. (2013) and Harvey (2013).
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Two examples of application

Two examples of GAS models for time series with fat tails:

Fat-tailed location model. A student-t model with time
varying mean, see Harvey and Luati (2013) and Harvey
(2013).

Fat-tailed volatility model A student-t model with time
varying variability, see Creat et al. (2013) and Harvey (2013).
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Example: t-GAS location model (1)

Consider the model

yt = µt + εt , εt
iid∼ tν ,

where

µt+1 = ωµ + βµµt + αµ
(ν + 1)(yt − µt)σ−1

ν + (yt − µt)2σ−2
.

In the limit ν →∞, the model distribution of εt is Gaussian
and µt is a linear combination of past yt as the score is
proportional to yt − µt .
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Example: t-GAS location model (2)

Impact of the standardized observation (yt − µt)/σ on the
score for different values of ν
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Example: t-GAS location model (3)

Figure: Quarterly UK National Rail Travel, Km traveled by UK
passengers. This plot is from Harvey and Luati (2013).
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Example: t-GAS volatility model (1)

Fat tails are a well known feature observed in stock returns
and student-t distribution is often considered

yt = σtεt , εt
iid∼ tν ,

where

σ2t+1 = ωσ + βσσ
2
t + ασ

(
(ν + 1)y2t
ν + σ−2t y2t

− σ2t
)
.

In the limit ν →∞, the t-GAS volatility model becomes a
GARCH model.
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Example: t-GAS volatility model (2)

Impact of yt on the score of the t-GAS volatility model.
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Example: t-GAS volatility model (3)
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Figure: S&P 500 daily Index.
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A flexible class of GAS models (1)

Some time series exhibit complex dynamic behaviours and a
GAS model may not be enough to properly model the data.

The idea is to make GAS models more flexible allowing the
parameter αλ in the GAS recursion to be time varying.

We consider the parameter αλ because, in some sense, it
determines the amount of information in the data.
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A flexible class of GAS models (2)

The GAS recursion becomes

λt+1 = ωλ + βλλt + h(ft+1)sλ,t , sλ,t = Sλ,tuλ,t

where h(·) is a link function and the time varying αλ is h(ft).

We specify ft relying on the score of the predictive
log-likelihood ∂ log p(yt |λt ; θ)/∂ft

ft+1 = ωf + βf ft + αf sf ,t , sf ,t = Sf ,tuλ,tuλ,t−1.

The resulting specification of sf ,t is very intuitive!
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Simulation example (1)

We model the data with a Gaussian model with time varying
mean

yt = µt + εt , εt
iid∼ N(0, σ2).

The time varying mean µt is given by

µt+1 = µt + exp(ft+1)sµ,t

ft+1 = ωf + βf ft + αf sf ,t ,

where sµ,t = (yt − µt) and sf ,t = (yt − µt)(yt−1 − µt−1).
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Simulation example (2)

Consider the following data generating process

yt = µot + εt , εt
iid∼ N(0, σ2),

the time varying mean is given by

µot =

{
0 if sin ((πt − 1)/200) > 0

3 if sin ((πt − 1)/200) < 0.

We generate time series from this process and show how this
flexible GAS model is able to better approximate the true
mean µot
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Simulation example (3)
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Figure: Time series generated from the data generating process.
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Simulation example (4)

The average mean square error is 47% larger for the GAS model
without the time varying ft .
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Figure: 1st plot: 90% confidence bounds filtered µt . 2nd plot: average
estimate of exp(ft). The dashed lines are for the model with time varying
ft and the continuous lines are for the fixed ft .
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Empirical example: the series

Changing dynamics in the US inflation process are well
documented in the literature.
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Figure: Quarterly US consumer price inflation series.
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Empirical example: a fat-tailed model (1)

Consider the following model

yt = µt + σtεt , εt
iid∼ tν(0, 1),

where
µt+1 = µt + exp(ft+1)sµ,t ,

ft+1 = ωf + βf ft + αf sf ,t ,

lnσt+1 = ωσ + βσ lnσt + ασsσ,t ,

The innovations are defined as

sµ,t =
(ν + 1)(yt − µt)σ−1t

(ν − 2) + (yt − µt)2σ−2t

, sσ,t =
(ν + 1)(yt − µt)2σ−2t

(ν − 2) + (yt − µt)2σ−2t

−1

sf ,t = sµ,tsµ,t−1.
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Empirical example: a fat-tailed model (2)

Impact of the standardized observation (yt − µt)σ−1t on the scores
for ν = 5
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Figure: First plot: sµ,t , second plot: sf ,t , third plot: sσ,t .

26 of 32



Empirical example: estimates

δf βf αf δσ βσ ασ v AICc

M1 -0.75 0.97 0.85 0.53 0.86 0.11 5.57 967
(0.40) (0.03) (0.42) ( 0.12) (0.09) (0.04) (1.57)

M2 -0.75 0.91 0.71 0.59 - - 3.82 978
(0.20) (0.03) (0.24) (0.09) (0.55)

M3 -0.23 - - 0.54 0.87 0.08 7.58 976
(0.14) (0.10) (0.12) (0.05) (2.40)

M4 -0.15 - - 0.56 - - 5.64 986
(0.11) (0.07) (1.43)

Table: The parameters δi , i = 1, 2 are a re-parametrization, i.e.
δi = ωi/(1− βi ). The last column contains the corrected Akaike
Information Criterion.
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Empirical example: filtered parameters
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Figure: First plot: estimated µt , second plot: exp(ft), third plot σt .
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Empirical example: filtered mean

Time

1974 1976 1978 1980 1982

4
6

8
10

12
14

Time

2000 2002 2004 2006

0
2

4
6

Figure: Time varying mean. Dashed lines: standard GAS model,
continuous lines: flexible GAS model.
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Empirical example: forecasting

Forecasting performance of the model.

h = 1 h = 2 h = 3 h = 4

M1 1.00 1.00 1.00 1.00
M2 0.99 1.01 1.04 1.02
M3 1.04 1.16 1.14 1.18*
M4 1.02 1.13 1.13 1.15*
Local level model 1.08 1.26 1.20 1.20*
ARIMA(4,1,0) 1.11 1.30 1.33 1.29*
ARIMA(1,1,1) 1.05 1.21 1.16 1.17*

Table: Out of sample FMSE ratio from the last 100 observations of the
quarterly US consumer price inflation series. The model is estimated on
rolling windows and the DM test is used. The benchmark is model 1.
The FMSE of model 1 is at the denominator of the ratio.
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Concluding comments

GAS models provide a general framework to specify dynamic
observation-driven models.

They are very effective in practical applications and the
parameters can be easily estimated.

The flexible class of GAS models we propose allow to handle
more complex situations.

Something I did not mention: the score-driven update for the
additional parameter ft can be justified by a similar optimality
argument as in Blasques et al. (2015).
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