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GAS models

The class of Generalized Autoregressive Score (GAS) models
of Creal et al. (2013) and Harvey (2013) is

yt ∼ p(yt |ft ; θ),

ft+1 = δ + φft + αst ,

where p(·|ft ; θ) is the conditional density of yt given ft .

The peculiarity of GAS models is given by the score innovation
st

st = Stut , ut =
∂ log p(yt |ft ; θ)

∂ft
,

where St is a scaling factor.
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Example: GAS models

Time-varying mean:
yt = ft + εt ,

- If εt is Normal: ARMA(1,1) model
- If εt is Student-t: Robust filter, Harvey and Luati (2014)

Time-varying variance:

yt =
√
ftεt ,

- If εt is Normal: GARCH(1,1) model
- If εt is Student-t: Robust filter, Creal et al. (2013)

In general, we can make time varying parameters of parametric
distributions such as Poisson, Bernulli, ordered probit, etc.
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Motivation for MIDAS-GAS

GAS models have several appealing features:

- Flexible specifications: Heteroscedasticity as well as heavy-tailed

distributions can be easily accounted for.

- Easy to implement: likelihood function in closed form.

- Powerful forecasting tools: accurate predictions in applications.

Often the variable we wish to forecast is measured with a
different frequency than other explanatory variables.
Appropriate methods are needed to account for this.

The MIDAS-GAS filter exploits the full potential of GAS models
and accounts for mixed frequencies through a MIDAS weighting
scheme of the score-innovations.
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Related literature

Linear factor models
- Mariano and Murasawa (2003), Schumacher and Breitung

(2008) and Blasques et al. (2016): Treating low frequency variables
as missing values, Kalman filter is used to extract and forecast the low
frequency signal.

- Frale and Monteforte (2011): Factor model with high frequency
variable transformed via MIDAS weighting scheme.

- Marcellino and Schumacher (2010): 2 steps approach. First step,
factors from high frequency variable obtained via PCA. Second step,
MIDAS regression using the factors.

GAS models
- Creal et al. (2014): GAS filter where mixed frequencies are handled

by introducing missing observations (Ad hoc method).
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The MIDAS-GAS filter
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Forecasting setting

The aim is forecasting a variable of interest yLt , which is sampled
at a low frequency L.

An explanatory variable xHt = (xH1,t , . . . , x
H
nx ,t)

′ that is sampled at
an high frequency H is available. Here t denotes the time index
of the low frequency variable.

Example:

- L is quarterly and H is daily

- nx is the numbers of days in a quarter (about 65)

- xHi ,t is the explanatory variable the i-th day of quarter t
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The MIDAS-GAS filter (i)

We consider the following structure:

- Dynamic properties of yLt and xHt depend on a common
time-varying parameter ft .

- yLt and xHt are independent conditional on ft .

Under these conditions, the classic score innovation for ft is

st = syt +
nx∑
i=1

sxit ,

where syt is the score contribution from yLt and sxit from xHi ,t .

Idea: transform score contribution through a MIDAS weighting
scheme to account for time order of the scores sxit , i = 1, . . . , nx .
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The MIDAS-GAS filter (ii)

The MIDAS-GAS model is specified as

yLt ∼ py (yLt |ft ; θ), xHi ,t ∼ px(xHi ,t |ft ; θ), i = 1, . . . , nx ,

where

ft+1 = δ + φft + αy s
y
t + αx

nx∑
i=1

ωi (ϕ)sxit ,

where ωi (ϕ), i = 1, . . . , nx , represent the MIDAS weights.

The exponential Almon Lag weights are

ωi (ϕ) =
exp(ϕ1i + ϕ2i

2)∑nx
i=1 exp(ϕ1i + ϕ2i2)

,

where ϕ = (ϕ1, ϕ2)′.
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Weighted likelihood estimation

The objective of the MIDAS-GAS model is forecasting the low
frequency variable yHt . We consider the weighted likelihood
approach of Blasques et al. (2016) to account for this.

Estimation of the static parameter vector θ is performed by
maximizing the weighted likelihood

LWT (θ) =
T∑
t=1

log py (yLt |ft ; θ) + W
T∑
t=1

nx∑
i=1

log px(xHi ,t |ft ; θ),

where T is the sample size and W ∈ [0, 1] is a given weight.

We set W = 0: consider only the likelihood contribution of yHt
(identification: parameters of xHt enter the likelihood through ft).
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Forecasting Inflation with
MIDAS-GAS
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Forecasting inflation

Our aim is forecasting quarterly headline inflation using daily
effective federal funds rates (EFFR) as predictor (Armesto et al.
2010). We consider data from 1955 to 2016.
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MIDAS-GAS factor model

MIDAS-GAS factor model with conditional heteroscedasticity:[
yLt
x
H
t

]
=

[
1

λxµ1nx

]
µt + σt

[
εy ,t
εx ,t

]
,

where εy ,t and εx ,t are independent errors.

The time-varying factor mean and variance are:

µt+1 = µt + αy
µs

y
µ,t + αx

µ

nx∑
i=1

ωi (ϕ)sxiµ,t ,

σ2t+1 = δ + φσ2t + αy
σs

y
σ,t + αx

σ

nx∑
i=1

ωi (ϕ)sxiσ,t ,

The score innovations depend on the distribution of the errors.
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Score innovations

We consider two different specifications for the error terms

Normal distribution (εy ,t ∼ N(0, 1) and εxi ,t ∼ N(0, 1)):

syµ,t = yL
t − µt , sxiµ,t = xHi,t − λxµµt ,

syσ,t = (yL
t − µt)

2 − σ2
t , sxiσ,t = (xHi,t − λxµµt)

2 − σ2
t .

Student-t distribution (εy ,t ∼ tν(0, 1) and εxi ,t ∼ N(0, 1)):

syµ,t =
(ν + 1)(yL

t − µt)

(ν − 2) + (yL
t − µt)2σ

−2
t

, sxiµ,t = xHi,t − λxµµt ,

syσ,t =
(ν + 1)(yL

t − µt)
2

(ν − 2) + (yL
t − µt)2σ

−2
t

− σ2
t , sxiσ,t = (xHi,t − λxµµt)

2 − σ2
t .

The Student-t distribution leads to a robust update
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Estimated models

ν λx
µ αy

µ αx
µ αy

σ αx
σ δ φ llik

t-MIDAS-GASg 7.36 1.49 0.46 0.14 0.23 0.07 2.21 0.87 -319.83

t-MIDAS-GAS 5.16 1.38 0.45 0.13 - - 2.87 - -333.89

MIDAS-GASg - 1.62 0.54 0.11 0.23 0.21 2.31 0.81 -476.68

MIDAS-GAS - 1.61 0.51 0.09 - - 3.44 - -511.36

Table: Parameter estimates of the models.
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Estimated MIDAS weights
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Figure: Estimated MIDAS weighting function.
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Out-of-sample experiment

We consider out-of-sample period from 1993 to 2016. Forecasts
are based on rolling window approach.

Besides our MIDAS-GAS models, several competing models are
included in the comparison: MIDAS regression, factor-MIDAS
(Frale and Monteforte, 2011), AR and standard GAS models.

We evaluate forecasting accuracy using the following criteria:

- Point forecasts: Mean Squared Error
- Density forecasts: log score criterion
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Point forecasts

Mean squared error ratio

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

t-MIDAS-GASg 1.00 1.00 1.00 1.00 1.00 1.00
t-MIDAS-GAS 1.03 1.00 1.02 1.04 1.05 1.02
MIDAS-GASg 1.02 0.99 1.01 0.95 0.96 0.95
MIDAS-GAS 1.00 1.00 1.07 1.03 1.01 1.01

t-MIDAS(2) 0.99 1.13 1.14 1.07 1.11 1.15
t-MIDASg(2) 0.96 1.05 1.10 1.02 1.04 1.09
MIDAS(2) 0.99 1.13 1.13 1.06 1.10 1.13
MIDASg(2) 0.98 1.12 1.13 1.04 1.06 1.09

t-AR(2) 1.03 1.12 1.13 1.03 1.16 1.14
t-ARg(2) 1.06 1.09 1.10 1.03 1.14 1.14
AR(2) 1.00 1.10 1.09 1.02 1.12 1.14
ARg(2) 0.98 1.09 1.08 1.00 1.12 1.13

fMIDAS 1.00 1.11 1.07 1.03 1.01 1.01

Table: The benchmark model is t-MIDAS-GASg.
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Density forecasts

Log score criterion

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

t-MIDAS-GASg -1.422 -1.546 -1.482 -1.612 -1.593 -1.579
t-MIDAS-GAS -1.411 -1.563 -1.548 -1.636 -1.620 -1.669
MIDAS-GASg -2.230 -2.185 -2.181 -2.196 -2.195 -2.120
MIDAS-GAS -2.218 -2.260 -2.212 -2.242 -2.222 -2.208

t-MIDAS(2) -1.760 -1.859 -2.016 -2.041 -1.983 -1.861
t-MIDASg(2) -1.977 -2.118 -1.815 -1.940 -2.095 -1.837
MIDAS(2) -2.301 -2.278 -2.340 -2.321 -2.312 -2.321
MIDASg(2) -2.219 -2.246 -2.254 -2.248 -2.245 -2.260

t-AR(2) -1.766 -2.128 -2.199 -1.939 -1.884 -2.325
t-ARg(2) -1.777 -1.946 -2.121 -1.877 -1.829 -1.899
AR(2) -2.281 -2.241 -2.356 -2.433 -2.257 -2.224
ARg(2) -2.174 -2.180 -2.263 -2.409 -2.160 -2.183

fMIDAS -2.217 -2.260 -2.312 -2.300 -2.282 -2.297
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Conclusion

We have introduced a novel GAS filter with MIDAS
weighting scheme for forecasting economic variables.

The proposed approach is easy-to-implement and very
flexible. It can account for heavy tails as well as
heteroscedasticity.

Forecasting results are promising. The MIDAS-GAS filter
outperforms standard competing models in forecasting quarterly
headline inflation using daily federal funds rates.
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