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GAS models

The class of Generalized Autoregressive Score (GAS) models of is

yt ∼ p(yt |ft ; θ), ft+1 = ω + βft + αst ,

where score innovation st is given by

st = Stut , ut =
∂ log p(yt |ft ; θ)

∂ft
,

and St is a scaling factor.
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GAS models with missing data

Missing data in time series can occur for several reasons:

- Missing data caused by external events.
- Unequally spaced time series.
- Mixed frequency data.

How are missing observations handled in practice?

GAS models with missing observations are estimated using the
setting-to-zero method.

Buccheri et al. (2017), Delle Monache et al. (2016), Lucas et

al. (2016), Koopman et al. (2015) and Creal et al. (2014).

Idea: set the score innovation to zero when a missing observation
occurs.

5 of 22



Setting-to-zero method (i)

Missing observations: sample of data {y1, y2, . . . , yT} where{
yt is observed, if It = 1

yt is not observed, if It = 0.

Setting-to-zero method:

Step 1: recover the filtered parameter setting the score to zero when
an observation is missing

f̂t+1(θ) = ω + β f̂t(θ) + αItst .

Step 2: plug-in the filter into the likelihood (pseudo likelihood)

L̂T (θ) = T−1
T∑
t=1

It log p(yt |f̂t(θ); θ),

Step 3: obtain the pseudo ML estimator θ̂T maximizing L̂T (θ).
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Setting-to-zero method (ii)

The setting-to-zero method is:

Simple to implement.

Intuitive and it can be justified by some arguments.

However, it leads to inconsistent inference.

In this paper:

We show that the pseudo ML is inconsistent for a local mean GAS
model.

We propose an indirect inference estimator that delivers consistent
inference for GAS models with missing data.
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Inconsistency of the
setting-to-zero method
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Local mean GAS models

Consider the Gaussian local mean GAS model:

yt = µt + εt , εt ∼ N(0, σ2),

µt+1 = ω + βµt + α(yt − µt).

Note: this model is in fact a linear model and it can be estimated by
exact ML using the Kalman filter.

Setting-to-zero method: it is straightforward to obtain that the
pseudo ML estimator of σ2 is inconsistent.

We show the non-trivial result that the pseudo ML is inconsistent also
for α and β.
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Inconsistency of pseudo ML

We assume that the missing observation process {It}t∈Z is an iid
Bernoulli sequence with success probability π.

Theorem (inconsistency of α and β)

The pseudo ML estimator θ̂T obtained from the setting-to-zero method
for the local mean GAS model is not consistent. In particular, there exists
an ε > 0 such that

P
(

lim inf
T→∞

‖θ̂T − θ0‖ > ε

)
= 1,

for some θ = (α, β) and some π ∈ (0, 1).

This result shows that even the dependence structure of the model
is inconsistently estimated.
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Simulation: local mean model
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Figure: Small sample distribution of the pseudo ML estimator for the
Gaussian local mean model. Different sample sizes are considered and π = 0.75.
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Example: Student-t GAS (i)

The inconsistency of the setting-to-zero method applies to GAS
models in general.

Example: the conditional volatility Student-t GAS model of Creal et
al. (2013) and Harvey (2013) is

yt =
√
htεt , εt ∼ tν ,

ht+1 = ω + βht + α

[
(ν + 1)y2

t

(ν − 2) + y2
t h
−1
t

− ht

]
where ω, β, α and ν are parameters to be estimated.
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Example: Student-t GAS (ii)
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Figure: Distribution for conditional volatility Student’s t model.
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A consistent indirect inference
estimator
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Indirect Inference estimation (i)

Idea: remove the bias of the setting-to-zero method by indirect inference.

We propose the following indirect inference estimator:

Simulate S series from the GAS model {yi,t(θ̄)}Tt=1, i = 1, . . . ,S .

Introduce missing observations in the simulations yi,t(θ̄) at time points
t where the real observations yt are missing.

Obtain pseudo ML estimator using the setting-to-zero method:

L̂S,T (θ, θ̄) =
1

S

S∑
i=1

L̂i,T (θ, θ̄), θ̂S,T (θ̄) = arg sup
θ∈Θ

L̂S,T (θ, θ̄).

Finally, the indirect inference estimator θ̃S,T is

θ̃S,T = arg inf
θ̄∈Θ

∥∥∥θ̂S,T (θ̄)− θ̂T
∥∥∥ .
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Indirect Inference estimation (ii)

Assumption: data missing at random and missing values process It is
stationary with P(It = 1) > 0.

Theorem (asymptotic distribution)

Under some additional conditions, we obtain that

√
T
(
θ̃S,T − θ0

)
d→ N(0,WS) as T →∞,

where

WS :=
(

1 +
1

S

)[∂θ∗(θ0)

∂θ>

]−1

V (θ0)

[
∂θ∗(θ0)

∂θ

>
]−1

where V (θ0) denotes the asymptotic variance
V (θ0) := Ω∗(θ0)−1(Σ∗(θ0)− K∗(θ0))Ω∗(θ0)−1.
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Simulation study (i)

We compare the performance of the indirect inference estimator with
exact ML and pseudo ML.

In general, exact ML is infeasible but we consider a local mean GAS
model for which exact ML is available via the Kalman filter.

Gaussian local mean GAS model:

yt = µt + εt , εt ∼ N(0, σ2),

µt+1 = ω + βµt + α(yt − µt).

Note: this model can be shown to be an ARMA(1,1) model.
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Simulation study (ii)

π = 0.40π = 0.40π = 0.40 π = 0.60π = 0.60π = 0.60
βββ ααα σ2σ2σ2 βββ ααα σ2σ2σ2

T = 500
PML 0.028 0.120 0.204 0.023 0.075 0.121
ML 0.029 0.060 0.109 0.023 0.047 0.087
II 0.025 0.064 0.118 0.020 0.051 0.091

T = 1000
PML 0.018 0.108 0.187 0.016 0.065 0.105
ML 0.018 0.042 0.078 0.016 0.033 0.058
II 0.014 0.045 0.084 0.013 0.035 0.062

Table: Mean squared error (MSE) of estimators obtained from 500 simulations
with S = 10. The true parameter vector is θ = (0.95, 0.3, 1)>.
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Application to S&P500

We perform an experiment to access the performance of the Indirect
Inference and pseudo ML estimator with a real dataset.

Dataset: daily log-returns of the S&P500 stock index from January
2000 to December 2016.

Model: conditional variance Student-t GAS model.

Experiment:

- Estimate the parameter θ = (ω, β, α, ν)> using the full dataset.

- Remove observations using a Bernoulli process with success probability
π and estimate the model using this new dataset.

- Repeat previous point multiple times and compare the estimates with
missing data with full-sample estimate.
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Pseudo ML
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Figure: Bias of the pseudo ML estimator wrt full sample estimator for different
π. Grey areas represent confidence bounds of the bias.
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Indirect Inference
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Figure: Bias of the indirect inference estimator wrt full sample estimator for
different π. Grey areas represent confidence bounds of the bias.

21 of 22



Conclusion

We prove that the setting-to-zero method for estimating GAS
models with missing data leads to inconsistent inference.

We propose an indirect inference estimator that delivers consistent
parameter estimates.

The proposed estimator shows comparable accuracy to the infeasible
exact ML estimator.
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