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Background (1)

INteger-valued AutoRegressive (INAR) models are one of
the most popular models for count time series.

The thinning operator “◦” satisfies

α ◦ N ∼ Bin(N, α),

for an N ∈ N and α ∈ (0, 1).

The first order INAR model is given by

yt = α ◦ yt−1 + εt , t ∈ Z,

where {εt}t∈Z is an iid sequence of count variables.

3 of 17



Background (2)

Real time series data often exhibit changing dynamic behaviors
and the classic INAR model may not be able to properly handle
these situations.

We introduce a class of INAR models that allows the survival
probability αt to be updated at each time period using past
information.

Time varying survival probabilities have been also considered by
Zheng et al. (2007) and Zheng and Basawa (2008). The latter
authors specify the survival probability as logitαt = ω + τyt−1.
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INAR models with dynamic αt

We allow the survival probability α to vary over time relying on
the GAS framework of Creal et al. (2013) and Harvey (2013).

The GAS-INAR model is described by the following equations

yt =αt ◦ yt−1 + εt ,

logitαt+1 =ω + β logitαt + τst ,

The innovation st is the score of the predictive likelihood, i.e.

st = ∂ log p(yt |yt−1, αt)/∂ logitαt ,

where p(yt |αt , yt−1) is the pmf of yt given yt−1 and αt .
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ML estimation

ML estimation can be easily performed as the likelihood function
is available in closed form.

Using the data {yt}Tt=1, the filtered probability is obtained as

logit α̂t+1(θ) = ω + β logit α̂t(θ) + τ ŝt ,

where logit α̂1(θ) = ω/(1− β).

Then, the MLE θ̂T is the maximizer of the likelihood function

L̂T (θ) =
T∑
t=2

log p(yt |α̂t(θ), yt−1),

over the parameter set Θ.
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Estimation under misspecification

The GAS-INAR model should not be considered a Data
Generating Process (DGP) but a filter to approximate an
unknown DGP (Blasques et al., 2015).

The conditional KL divergence is given by

KLt(θ) =
∞∑
x=0

log

(
po(x |It−1)

p(x |α̃t(θ), yt−1)

)
po(x |It−1),

where po(x |It−1) is the true conditional pmf of the observations.

The pseudo-true parameter θ∗ is defined as the minimizer of the
average KL divergence EKLt(θ) in the parameter set Θ.
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Consistency of ML estimation

(C.1) The DGP {yt}t∈Z is stationary and ergodic count process.

(C.2) The moments condition Ey 2
t <∞ is satisfied.

(C.3) The compact set Θ is such that E log Λt(θ) < 0, ∀ θ ∈ Θ.

(C.4) The model is identifiable in the compact set Θ.

Theorem

Let conditions (C.1)-(C.4) hold, then the MLE θ̂T is strongly consistent

θ̂T
a.s.−−→ θ∗, T −→∞.
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Simulation: DGPs

Consider DGPs of the form

yt = αo
t ◦ yt−1 + εt , εt ∼ P(5),

where the DGPs differ for the specification of αo
t .

The following four dynamics are considered:

(1) Fast sine: αo
t = 0.5 + 0.25 sin(πt/100).

(2) Slow sine: αo
t = 0.5 + 0.25 sin(πt/250).

(3) Fast steps: αo
t = 0.25I[−1,0] (sin(πt/100)) + 0.75I(0,1] (sin(πt/100)).

(4) Slow steps: αo
t = 0.25I[−1,0] (sin(πt/250)) + 0.75I(0,1] (sin(πt/250)).
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Simulations: filtered paths for αt
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Figure: Confidence bounds for the filtered paths of the surviving probability.
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Simulation: tables

Point prediction (MSE)

Fast sine Slow sine Fast steps Slow steps

INAR 0.242 0.257 0.322 0.356

rc-INAR 0.112 0.111 0.145 0.132

GAS-INAR 0.077 0.060 0.101 0.072

Pmf prediction (KL divergence)

Fast sine Slow sine Fast steps Slow steps

INAR 0.238 0.253 0.412 0.442

rc-INAR 0.117 0.114 0.212 0.185

GAS-INAR 0.053 0.029 0.128 0.057

Table: MSE and KL divergence between the true DGP and the different
models. The rc-INAR model is the model of Zheng and Basawa (2008).
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Crime time series
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Figure: Monthly number of criminal reports in Blacktown, Australia, with
empirical autocorrelation functions.
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Estimation results

ω β τ µ σ2 log-lik pvalue AIC

GAS-NBINAR -0.907 0.965 0.135 6.083 14.155 -662.91 0.002 1335.82
(0.338) (0.027) (0.055) (0.481) (1.853)

NBINAR -0.401 - - 5.586 15.265 -669.03 - 1344.07
(0.176) (0.456) (2.125)

GAS-PoINAR -1.258 0.967 0.141 6.539 - -695.04 0.000 1398.24
(0.294) (0.019) (0.033) (0.313)

PoINAR -0.613 - - 6.046 - -714.58 - 1433.21
(0.140) (0.323)

Table: ML estimate for different specifications.
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Filtered survival probability
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Figure: Filtered survival probability from the GAS-NBINAR model with
confidence bounds.
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Out-of-sample results

Point forecasts (MSE)

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

GAS-NBINAR 15.77 20.15 20.56 21.51 21.36 21.23

NBINAR 16.51 21.47 22.61 23.70 23.85 23.72

GAS-PoINAR 16.33 20.66 21.18 21.98 21.82 21.52

PoINAR 17.00 21.82 22.86 23.79 23.91 23.78

Pmf forecasts (log score)

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

GAS-NBINAR -2.73 -2.82 -2.83 -2.85 -2.85 -2.85

NBINAR -2.75 -2.85 -2.88 -2.91 -2.91 -2.91

GAS-PoINAR -2.83 -2.96 -2.98 -3.00 -3.00 -2.98

PoINAR -2.88 -3.08 -3.12 -3.18 -3.19 -3.18

Table: Forecast MSE and log score criterion computed in the last 100
observations for different forecast horizons h.
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Concluding comments

We provide a dynamic specification for the INAR survival
probability based on the score framework of Creal et al. (2013)
and Harvey (2013).

The model should not be interpreted as a DGP but as a filter. In
this direction, we show the consistency of ML estimation.

Simulation and empirical experiments illustrate the flexibility and
usefulness of the proposed model.
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