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Background (1) W

m INteger-valued AutoRegressive (INAR) models are one of
the most popular models for count time series.

m The thinning operator “o" satisfies
aoN ~ Bin(N, ),
foran N € N and a € (0,1).
m The first order INAR model is given by
Yt =«aoys 1+¢&, tE€EL,

where {€¢}+cz is an iid sequence of count variables.
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Background (2) e,

m Real time series data often exhibit changing dynamic behaviors
and the classic INAR model may not be able to properly handle
these situations.

m We introduce a class of INAR models that allows the survival
probability a; to be updated at each time period using past
information.

m Time varying survival probabilities have been also considered by
Zheng et al. (2007) and Zheng and Basawa (2008). The latter
authors specify the survival probability as logit oy = w + Ty;_1.
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INAR models with dynamic a;

m We allow the survival probability a to vary over time relying on
the GAS framework of Creal et al. (2013) and Harvey (2013).

m The GAS-INAR model is described by the following equations

Yt =0t O Yr—1 + €y,
logit avp 1 =w + [ logit ay + 75,

m The innovation s; is the score of the predictive likelihood, i.e.
st = Olog p(yt|yt—1,ar)/0 logit o,

where p(y¢|at, yt—1) is the pmf of y; given y;—1 and a;.
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ML estimation

m ML estimation can be easily performed as the likelihood function
is available in closed form.

m Using the data {y;}/_,, the filtered probability is obtained as
|Og|t &H_l(ﬁ) =w + B |Og|t (A)ét(e) + T§t,
where logit &1(0) = w/(1 — B).

m Then, the MLE HAT is the maximizer of the likelihood function
T
Lr(0) = Z log p(ye|@e(0), ye-1),
t=2

over the parameter set ©.
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Estimation under misspecification

m The GAS-INAR model should not be considered a Data
Generating Process (DGP) but a filter to approximate an
unknown DGP (Blasques et al., 2015).

m The conditional KL divergence is given by

= s () Pl

) Yt—l)

where p°(x|/l;_1) is the true conditional pmf of the observations.

m The pseudo-true parameter 6* is defined as the minimizer of the
average KL divergence EKL:(0) in the parameter set ©.
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Consistency of ML estimation 5 o

The DGP {y:}+ez is stationary and ergodic count process.

)

) The moments condition Ey? < oo is satisfied.

) The compact set © is such that Elog/A:(f) <0, V0 € ©.
)

The model is identifiable in the compact set ©.

Theorem
Let conditions (C.1)-(C.4) hold, then the MLE Ot is strongly consistent

0r 22 0*, T — oco.
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Simulation: DGPs () oo srom

m Consider DGPs of the form
Ye =agoyr1+er, e~ P(b),
where the DGPs differ for the specification of af.

m The following four dynamics are considered:

(1) Fast sine: af = 0.5+ 0.25sin(7t/100).
(2) Slow sine: af = 0.5+ 0.25sin(wt/250).
(3) Fast steps: of = 0.25/_1,0) (sin(7t/100)) + 0.75/0,1) (sin(t/100)).
(4) Slow steps: af = 0.25/_1,qj (sin(7t/250)) 4+ 0.75/ 1j (sin(7t/250)).
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Simulations: filtered paths for SO
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Figure: Confidence bounds for the filtered paths of the surviving probability.




Simulation: tables

Point prediction (MSE)
Fast sine Slow sine Fast steps Slow steps

INAR 0.242 0.257 0.322 0.356
rc-INAR 0.112 0.111 0.145 0.132
GAS-INAR  0.077 0.060 0.101 0.072

Pmf prediction (KL divergence)

Fast sine Slow sine Fast steps Slow steps

INAR 0.238 0.253 0.412 0.442
rc-INAR 0.117 0.114 0.212 0.185
GAS-INAR  0.053 0.029 0.128 0.057

Table: MSE and KL divergence between the true DGP and the different
models. The rc-INAR model is the model of Zheng and Basawa (2008).
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Crime time series
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Figure: Monthly number of criminal reports in Blacktown, Australia, with
empirical autocorrelation functions.
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Estimation results ) e S

w 15} T 7 o2 log-lik  pvalue AlIC

GAS-NBINAR -0.907 0.965 0.135 6.083 14.155 -662.91 0.002 1335.82
(0.338) (0.027) (0.055) (0.481) (1.853)

NBINAR -0.401 - - 5586 15.265 -669.03 - 1344.07
(0.176) (0.456)  (2.125)

GAS-PoINAR -1.258 0.967 0.141 6.539 - -695.04 0.000 1398.24
(0.294)  (0.019) (0.033) (0.313)

PoINAR -0.613 - - 6.046 - -714.58 - 1433.21
(0.140) (0.323)

Table: ML estimate for different specifications.
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Filtered survival probability 5 o
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Figure: Filtered survival probability from the GAS-NBINAR model with
confidence bounds.
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Out-of-sample results Y o

Point forecasts (MSE)
h=1 h=2 h=3 h=4 h=5 h=6
GAS-NBINAR 15.77 20.15 20.56 21.51 21.36 21.23

NBINAR 16.51 2147 2261 2370 23.85 23.72
GAS-PoINAR  16.33 20.66 21.18 21.98 21.82 21.52
PoINAR 17.00 21.82 2286 23.79 2391 23.78

Pmf forecasts (log score)
h=1 h=2 h=3 h=4 h=5 h=6
GAS-NBINAR -2.73 -2.82 -2.83 -2.85 -2.85 -2.85

NBINAR -2.75 -28 -283 -291 -291 -201
GAS-PoINAR  -2.83 -296 -298 -3.00 -3.00 -2.98
PoINAR -288 -3.08 -312 -318 -3.19 -3.18

Table: Forecast MSE and log score criterion computed in the last 100
observations for different forecast horizons h.
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Concluding comments s oo

m We provide a dynamic specification for the INAR survival
probability based on the score framework of Creal et al. (2013)
and Harvey (2013).

m The model should not be interpreted as a DGP but as a filter. In
this direction, we show the consistency of ML estimation.

m Simulation and empirical experiments illustrate the flexibility and
usefulness of the proposed model.
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