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IntrOd UCtion DI PADOVA

m |n observation-driven models invertibility is needed to
1) Ensure the consistency of the MLE.
2) Uncover the true path of the time varying parameter (even if
o is known).

m Problem: existing conditions for invertibility are often
useless in practice. In particular, to ensure invertibility to hold
we need to impose severe restrictions that are unreasonable in
empirical applications.

m Solution: we derive the consistency of the MLE considering
feasible invertibility conditions that can cover situations of
practical interest.
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Motivation: the model

m Consider the Beta-t-GARCH model with leverage effects of
Creal et al. (2013) and Harvey (2013)

ye = fiee, e+~ t,(0,1),
(v+1)y?
(v—2)+ i ty?’

fir1 = w+ Bf+ (a+ydr)

where d; = 1 if y; <0 and d; = 0 otherwise.

m To ensure the consistency of the MLE, the parameter region ©
where the likelihood is maximized has to satisfy

(v+ 1)y
(v —2)3 +y2)°

and 6y € ©. —

<0, Vo€,

Elog|B + (a + vdt)




Motivation: the parameter region i
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Figure: Parameter region where we can ensure that the invertibility condition
hold. The cross denotes the parameter estimate using monthly log-differences
of the S&P 500 stock index.
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Observation-driven models e

m We observe data {y;}7_;, and we consider the following model

yt‘ft ~ p(yt’ftae)v
ft+1 — ¢5(ft7)/t70); te Zw

where p(-|f;; ) is a density function, § € © a parameter vector
and ¢ is a continuous function.

m Under the assumption of correct specification, the data
generating process (DGP) satisfies the model equations at § = 6
and f£ denotes the true time varying parameter.

m We are interested in ML estimation of the static parameter ¢
and, in particular, the consistency of the MLE.
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The likelihood function

m Using the observed data, the filtered parameter is obtained as
fri1(0) = (A (6),y1,0), teN,
for an initial value £ () € 7y C R.
m The MLE is then obtained maximizing the likelihood
La(0) = n> " log p(y: f1(6), 6),
over the parameter set ©. -

m The stability (invertibility) of {#(0)}+en for the § € © plays a
key role to ensure the consistency of the MLE.
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Invertibility

m The filtered parameter {#(0)}:cn at @ is invertible if

f(0) — f(0)] 2250, as t — oco.

for any f(0) € F, where {f:(6)}¢cz is a stochastic sequence.

m Invertibility guarantees that the path of the true time varying
parameter f° can be recovered asymptotically, i.e.
|%(60) — £2| =5 0.

Invertibility is not merely a technical condition, see Sorokin
(2011) and Wintenberger (2013).
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Why is invertibility important? 19 b

EGARCH(1,1): y; = exp(f;/2)et, fiy1 = w + Bfe + aley].
m || < 1 ensures stationarity of the EGARCH(1,1) process.

m |5o| < 1 does not ensure invertibility of the filter #(6y).

Plot of 107° Z%fl |72 — f:(6p)| for different initializations £ (6p).
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Figure: Non-invertibility example of EGARCH(1,1) from Wintenberier ‘2013’.



How can we ensure invertibility?

m As in Straumann and Mikosh (2006), sufficient conditions for
invertibility can be obtained on the basis of Theorem 3.1 of
Bougerol (1993).

m Bougerol's theorem provides general conditions for stability of
stochastic processes.

m We obtain that {£(6)}sen is invertible if
Elogh:(0) < 0,
where

Ae(6) = sup
f

I ww
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Invertibility: GARCH and EGARCH

m GARCH(1,1) model
Filtered parameter:
frr1(0) = w + BA(0) + ay?.
Invertibility condition:
E log sups |0(Bf + ay?)/0f| = log(B) < 0.

m EGARCH(1,1) model
Filtered parameter:
fis1(6) = w + BF(0) + alyi exp (~£(0)/2) -
Invertibility condition:
E'logsupy |0 (Bf + aly:| exp(—f/2)) /Of| =
Elogmax {3,2 1aly;|exp(—2"'w/(1 — B)) — B} < 0.
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Invertibility in practice e

m Often, in practice, E log A¢(f) < 0 cannot be checked directly
as A¢(0) depends on the unknown data generating process.

m This leads to either a very small region or a degenerate region ©
where the likelihood should maximized

0, = argmax L,(6),
/e

m |n practical applications, invertibility conditions are ignored and
therefore the consistency of the MLE is not guaranteed and
it may not be possible to uncover the true path £°.
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MLE on an empirical region

m To handle this issue we define the MLE on a parameter region
that satisfies an empirical version of the invertibility condition
Elog A+(6) < 0, namely

0, = argmax L,(0),
06,

R _ 1<
6, = {eee: nZIogAt(9)<O}.
t=1

m Wintenberger (2013) first proposed the estimation of the
parameter region for the QMLE of the EGARCH(1,1) model.
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Consistency of the MLE 5 e

We consider the following conditions:
The data generating process is stationary with E log A:(6y) < 0.

The model is identifiable.

)

)

) The log A¢(0) is a.s. continuous and it has a finite first moment.

) The log-likelihood function is Lipschitz continuous with respect to f(6).
)

The first moment of the likelihood function is uniformly bounded.

Theorem
Let conditions (C.1)-(C.5) hold, then the MLE 8, is strongly consistent,
ie.

én i) 90, n — oQ.

#o(,) — £°| 225 0 as n goes to infinity.

Furthermore,
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Example 1: the model

m The Beta-t-GARCH model with leverage effects of Creal et
al. (2013) and Harvey (2013) is

yr = ftgta Et ~ t\/(oal):
(v+1)y?

(v—2)+fly?

fer1 =
where d; = 1 if y; < 0 and d; = 0 otherwise.
m The invertibility condition E log A+(0) < 0 is given by

(v+Dyr
Elog |3 dy
%/+%a+v)«v_m@+ﬁy
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Example 1: the parameter region
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Figure: Invertibility regions obtained considering the monthly log-differences of
the S&P 500 stock index.
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Example 2: the model

m The dynamic autoregressive model Blasques et al. (2014) and
Delle Monache and Petrella (2014) is

Vi = feYt—1 + 0, €~ ty,
(Yt - ft}/t—l))/t—l
1+ V71072(}/t - ft‘)/t—l)27

firi=w+ B+«

m The invertibility condition E log A+(#) < 0 is given by

EIogmax{’ﬁ — ay?

ﬁ+%ﬁ}<o,veee

)

m Sufficient conditions leads to a degenerate region with oo = 0.
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Example 2: the parameter region 15 e
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Figure: Invertibility region obtained considering the monthly log-differences of
the US unemployment claims.
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Concluding remarks s oo

m Even if fp does not satisfy E log No(6o) < 0, the MLE G, and the
filtered parameter f,(0,) asymptotically does not depend on the
initialization f,(0).

m In the case of model misspecification, the MLE 6, is consistent
w.r.t. a pseudo true parameter 0*. This pseudo true parameter
has the interpretation of being the minimizer of the following
marginal KL divergence

KL(0) = E log p°(y|y*™") — Elog p(y:|f:(6), 0),

where p°(y:|yt~!) denotes the unknown true conditional
distribution of y;.
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